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Abstract

Most existing empirical studies on affine term structure models (ATSMs) have mainly

focused on in-sample goodness-of-fit of historical bond yields and ignored out-of-sample

forecast of future bond yields. Using an omnibus nonparametric procedure for density

forecast evaluation in a continuous-time framework, we provide probably the first

comprehensive empirical analysis of the out-of-sample performance of ATSMs in forecasting

the joint conditional probability density of bond yields. We find that although the random

walk models tend to have better forecasts for the conditional mean dynamics of bond yields,

some ATSMs provide better forecasts for the joint probability density of bond yields.

However, all ATSMs considered are still overwhelmingly rejected by our tests and fail to

provide satisfactory density forecasts. There exists room for further improving density

forecasts for bond yields by extending ATSMs.

r 2005 Elsevier B.V. All rights reserved.

JEL classification: C4; C5; G1

Keywords: Density forecast; Affine term structure models; Probability integral transform; Financial risk

management; Value at risk; Fixed-income portfolio management
see front matter r 2005 Elsevier B.V. All rights reserved.

.jeconom.2005.07.018

nding author. Department of Economics and Department of Statistical Science, Cornell

thaca, NY 14853, USA. Tel.: +1 607 255 5130; fax: +1607 255 2818.

dress: yh20@cornell.edu (Y. Hong).

www.elsevier.com/locate/jeconom


ARTICLE IN PRESS

A.V. Egorov et al. / Journal of Econometrics 135 (2006) 255–284256
1. Introduction

The term structure of interest rates, which concerns the relationship among the
yields of default-free bonds with different maturities, is one of the most widely
studied topics in economics and finance. Following the pioneering works of Vasicek
(1977) and Cox et al. (1985), a large number of multifactor dynamic term structure
models (DTSMs) have been developed over the last two decades.1 These models, by
imposing cross-sectional and time series restrictions on bond yields in an internally
consistent manner, provide important insights for our understanding of term
structure dynamics. They have been widely used in financial industry for pricing
fixed-income securities and managing interest rate risk.

Affine term structure models (ATSMs), first introduced in Duffie and Pan (1996),
have become the leading DTSMs in the literature due to their rich model
specification and tractability. In ATSMs, the short-term interest rate is an affine
function of the underlying state variables which follow affine diffusions (the
instantaneous drift and variance are affine functions of the state variables) under
both the risk-neutral and physical measures. These assumptions allow closed-form
solutions for a wide variety of fixed-income securities (see, e.g., Duffie et al., 2000;
Chacko and Das, 2002), which greatly simplify empirical implementations of
ATSMs. As a result, ATSMs have become probably the most widely studied DTSMs
in the academic literature.

Despite the numerous empirical studies on DTSMs, the existing literature has
mainly focused on in-sample fit of historical bond yields and ignored out-of-sample
forecast of future bond yields. In-sample diagnostic analysis is important and can
reveal useful information on possible sources of model misspecifications. However, it
is the evolution of the yield curve in the future, not the past, that is most relevant in
many financial applications, such as pricing and hedging fixed-income securities and
managing interest rate risk. As widely recognized in the literature, the current yield
curve contains information about the future yield curve and the state of the
economy. Therefore, accurate forecasts of bond yields are also important for
savings and investments decisions of households and firms, and for macroeconomic
policy decisions of monetary authorities. Furthermore, as pointed out by Duffee
(2002, p. 465), ‘‘a model that is consistent with finance theory and produces
accurate forecasts can make a deeper contribution to finance,’’ especially for
explaining time varying expected bond returns and the failure of the expectation
hypothesis.

Unfortunately, there is no guarantee that a model that fits historical data well will
also perform well in out-of-sample forecast, due to at least three important reasons.
First, the extensive search for more complicated models using the same (or similar)
data set(s) may suffer from the so-called data snooping bias, as pointed out by Lo
and MacKinlay (1989) and White (2000). In the present context, most studies on
1The theoretical and empirical literature on multi-factor dynamic term structure models is too huge and

diversed to be summarized here. For excellent reviews of the current literature, see Dai and Singleton

(2003) and Piazzesi (2004).
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ATSMs have used either U.S. Treasury yields in the past 50 years or U.S. dollar
swap rates in the past 15 years. While a more complicated model can always fit a
given data set better than simpler models, it may overfit some idiosyncratic features
of the data without capturing the true data-generating process. Out-of-sample
forecasting evaluation will alleviate, if not eliminate completely, such data snooping
bias. Second, an overparameterized model contains a large number of estimated
parameters and inevitably exhibits excessive sampling variation in parameter
estimation. Such excessive parameter estimation uncertainty may adversely affect
the out-of-sample forecast performance. Third, a model that fits in-sample data well
may not forecast the future well because of unforeseen structural changes or regime
shifts in the data-generating process. Therefore, in-sample analysis is not adequate
and it is important to examine the out-of-sample predictive ability of existing term
structure models, especially when comparing competing models.

A few studies that do consider the out-of-sample performance of ATSMs have
shown that they fail miserably in forecasting the conditional mean of future bond
yields. For example, Duffee (2002) shows that the completely ATSMs of Dai and
Singleton (2000) have worse forecasts of the conditional mean of bond yields than a
simple random walk model in which expected future yields are equal to current
yields. Consequently, Duffee (2002, p. 434) concludes that ‘‘for the purposes of
forecasting, completely ATSMs are largely useless’’.2 In fact, it has been shown that
the simple random walk model outperforms most sophisticated models in forecasting
the conditional mean of many other economic and financial time series. One well-
known example is the forecasts of foreign exchange rates: the classic paper of Meese
and Rogoff (1983) and many important subsequent studies have shown that the
random walk model outperforms most structural and time series models in
forecasting the conditional mean of major exchange rates.

However, the full dynamics of an intertemporal model is completely characterized
by the conditional density of the state variables, which includes not only the
conditional mean, but also higher-order conditional moments. A model that has
better forecasts of the conditional mean does not necessarily have better forecasts of
higher-order conditional moments as well. For example, it is widely known that
GARCH and stochastic volatility models provide better forecasts of the conditional
variance of many financial time series than simple random walk models. There is a
vast literature on volatility forecasting for the purpose of option pricing and risk
management (see, e.g., Andersen et al., 2004). As shown by Dai and Singleton
(2000), the ATSMs that have the best (in-sample) empirical performance are those
that are flexible in modeling the time varying volatilities and correlations of the state
variables. In fact, it is well known that changes of most financial time series have
weak or little dependent structure in conditional mean, but persistent dependence in
conditional variance and higher-order conditional moments. Therefore, ATSMs
2Diebold and Li (2002) provide some encouraging results on the forecast of the level of future bond

yields using variants of the Nelson–Siegel exponential components framework to model the entire yield

curve. However, as the authors point out, their model is mainly statistical and belongs to neither the no-

arbitrage nor the equilibrium approach to term structure modeling.
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might have good forecasts for the higher-order moments, or even the whole
conditional density of bond yields, although they have poor forecasts of the
conditional mean dynamics.

In this paper, we study whether ATSMs can provide accurate forecasts of the joint
conditional probability density of bond yields. We focus on forecasting the
conditional density because interest rates, like most other financial data, are highly
non-Gaussian. One needs to go beyond the conditional mean and variance to get a
complete picture of term structure dynamics. The conditional probability density of
the state variables characterizes the full dynamics of a term structure model and
essentially checks all conditional moments simultaneously (if the moments exist). In
fact, all continuous-time models in finance, including ATSMs, are essentially models
for the transition density of the underlying economic process. Because of this,
density forecast evaluation is a very natural and suitable way to evaluate these
financial models.

Density forecasts are important not only for constructing statistical tests, but also
for many economic and financial applications. For example, the booming industry of
financial risk management is essentially dedicated to provide density forecasts
for portfolio returns, and then to track certain aspects of the distribution such as
Value at Risk (VaR) to quantify the risk exposure of a portfolio (e.g., Duffie and
Pan, 1997; Morgan, 1996; Jorion, 2000).3 Density forecast in ATSMs is especially
important for financial risk management in the huge fixed-income markets. In
ATSMs, a finite number of state variables drive the evolution of the whole yield
curve. Thus, accurate forecasts of the joint density of the state variables would allow
us to forecast the distribution of the whole yield curve. If ATSMs can provide
accurate density forecasts, they would be very useful for managing the large fixed-
income holdings of many banks given their closed-form solutions for most existing
fixed-income securities. For other financial applications of ATSMs, such as
derivatives pricing and hedging, density forecasts rather than forecasts of a specific
feature of the density will be required. Therefore, when evaluating ATSMs, out-of-
sample density forecast is an important dimension of model diagnostics that should
not be ignored.

Evaluating density forecasts is not trivial, given that the probability density
function is not observable even ex post. Unlike point forecast evaluation, there are
relatively few statistical tools for density forecast evaluation.4 In a pioneering
contribution, Diebold et al. (1998) evaluate density forecasts by examining the
dynamic probability integral transforms of the data with respect to a model forecast
3It is important to point out that many applications, such as VaR forecasts, require only certain specific

features of the density, but not the entire density. We choose to focus on the entire density because in any

application and for any loss function, it is always preferable to use a model that can capture the whole

density rather than other models that can only capture some specific features of the density (see Diebold et

al., 1998; Granger and Pesaran, 2000). While it could be difficult to identify a correctly specified density

model in practice, our procedures can help reveal potential sources of model misspecifications, which

could be useful for improving the forecast model.
4See Corradi and Swanson (2005) for an excellent survey on existing approaches to density forecast

evaluation.
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density. Such a transformed series, often referred to as the ‘‘generalized residuals’’ of
the density forecast model, should be i.i.d. U½0; 1� if the density forecast model
correctly captures the full dynamics of the underlying process. Any departure from
i.i.d. U½0; 1� is evidence of suboptimal forecasts and model misspecification. We
extend an omnibus nonparametric in-sample test for i.i.d. U½0; 1� developed in Hong
and Li (2005) to out-of-sample density forecast for continuous-time models of a
multivariate process, some of whose components may be latent variables. The
evaluation statistics, which measure the departure of the ‘‘generalized residuals’’
from i.i.d. U½0; 1�; can be viewed as a metric of the distance between the forecast
model and the true data-generating process. While researchers have to choose a lag
order when implementing Hong and Li’s (2005) test, we introduce a portmanteau
statistic that combines Hong and Li’s (2005) test statistics at different lag orders.5 As
a result, the power of the portmanteau statistic becomes much less dependent on
which lag order we use in practice. The portmanteau statistic has the advantage of
detecting a wide range of suboptimal density forecasts and is convenient for
comparing the performance of different models.6

Using the density forecast evaluation procedure just described, we provide
probably the first comprehensive empirical analysis of the out-of-sample perfor-
mance of ATSMs in forecasting the joint conditional probability density of bond
yields. While we consider similar models as Hong and Li (2005), i.e., the three-factor
completely and essentially ATSMs, the focus of our analysis is mainly on the out-of-
sample forecasting performance of these models. We find that although the random
walk models tend to have better forecasts of the conditional mean of bond yields,
some ATSMs provide better density forecasts of the joint probability density of bond
yields. However, all affine models are still overwhelmingly rejected and none of them
provides satisfactory density forecasts. This suggests that time series models with
more flexible specifications might be able to provide better density forecasts than the
affine models.

The rest of this paper is organized as follows. In Section 2, we introduce the
nonparametric procedure for density forecast evaluation tailored to a continu-
ous-time framework. In Section 3, we discuss density forecast for multifactor
ATSMs. Section 4 investigates the in-sample and out-of-sample performance of
ATSMs. In Section 5, we conclude the paper. Appendix provides the asymptotic
theory.
5Hong and Li (2005) show that their statistics at different lag orders yield similar results in all the

applications they consider.
6Density forecasts can be used for many different purposes, such as pricing, risk management, and

portfolio selections. Consequently, the quality of the forecasts can also be evaluated based on the objective

of the application for which they are made. Indeed many studies have evaluated forecasting performance

using economic rather than statistical criteria. These include Christofferson and Diebold (1997), Diebold

(2001), Elliott and Timmermann (2002), Granger and Pesaran (2000), and many others. We choose to

evaluate density forecasts based on our nonparametric statistic for the i.i.d. U½0; 1� hypothesis, again based

on the fact that a model that can capture the full dynamics of the data generating process should be

preferable to any other model, regardless of the objective function (or loss function) of the application.



ARTICLE IN PRESS

A.V. Egorov et al. / Journal of Econometrics 135 (2006) 255–284260
2. Nonparametric density forecast evaluation

2.1. Dynamic probability integral transform

Probability distribution or density function is a widely accepted approach to
modeling uncertainty in economics and finance (e.g., Rothschild and Stiglitz, 1970).
The importance of density forecast has been recognized in the recent literature due to
the works of Diebold et al. (1998), Granger (1999), and Granger and Pesaran (2000),
among many others. These authors show that accurate density forecasts are essential
for decision-making under uncertainty when forecasters’ objective functions are
asymmetric and the underlying processes are non-Gaussian.

In many areas of economics and finance, density forecasts have become a standard
practice. For example, modern risk control techniques, such as VaR, typically
involve some form of density forecasts.7 In macroeconomics, monetary authorities in
the U.S. and U.K. (the Federal Reserve Bank of Philadelphia and the Bank of
England) have been conducting quarterly surveys on density forecasts for inflation
and output growth to help set their policy instruments (e.g., inflation target). There is
also a growing literature on extracting density forecasts from options prices to obtain
useful information on otherwise unobservable market expectations (e.g., Fackler and
King, 1990; Jackwerth and Rubinstein, 1996; Soderlind and Svensson, 1997; Ait-
Sahalia and Lo, 1998).

One of the most important issues in density forecast is the evaluation of the quality
of a forecast (Granger, 1999), since suboptimal density forecasts could have severe
consequences in many applications. For example, an excessive forecast of VaR could
force risk managers and financial institutions to hold too much capital, imposing an
additional cost. Suboptimal density forecasts for important macroeconomic
variables may lead to inappropriate decisions (e.g., inappropriate level and timing
in interest rate setting), which could have serious consequences on the economy. In a
decision-theoretic context, Diebold et al. (1998) and Granger and Pesaran (2000)
show that if a density forecast model coincides with the true conditional density of
the data-generating process, it would be preferred by all forecast users regardless of
their objective functions. Thus, testing the optimality of a forecast boils down to
testing whether the forecast model captures the true data-generating process. This is
a challenging job simply because we never observe an ex post density. So far there
have been not many statistical evaluation procedures for density forecasts.

In an important paper, Diebold et al. (1998) use a probability integral transform
of the data with respect to the density forecast model to assess the optimality of
density forecasts. They show that if the conditional density model is correctly
specified, then the probability integral transformed series should be i.i.d. U½0; 1�. This
fact is first established by Rosenblatt (1952) in a simpler context, but Diebold et al.
(1998) is one of the first to use it for density forecast evaluation in econometrics.
7Not all VaR forecasts involve density forecasts. One example is the CAViaR model of Engle and

Manganelli (2004).
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Suppose we have a random sample of interest rates frtDg
L
t¼1 of size L, where D is

the time interval at which the data are observed or recorded. For a given continuous-
time interest rate model, there is a model-implied transition density

q
qr

PðrtDprjI ðt�1ÞD; yÞ ¼ pðr; tDjI ðt�1ÞD; yÞ; 0oro1,

where y is an unknown finite-dimensional parameter vector, I ðt�1ÞD ¼ frðt�1ÞD;
rðt�2ÞD; . . . ; rDg is the information set available at time ðt� 1ÞD. We divide the whole
sample into two subsamples: an estimation sample frtDg

R
t¼1 of size R; which is used to

estimate model parameters and a forecast sample frtDg
L
t¼Rþ1 of size n ¼ L� R; which

is used to evaluate density forecast.8 We can then define the probability integral
transform of the data in the forecast sample with respect to the model-implied
transition density

ZtðyÞ �
Z rtD

�1

pðr; tDjI ðt�1ÞD; yÞdr; t ¼ Rþ 1; . . . ;L. (1)

If the continuous-time model is correctly specified in the sense that there exists some
y0 such that the model-implied transition density pðr; tDjI ðt�1ÞD; y0Þ coincides with
the true transition density of interest rates, then the transformed sequence fZtðy0Þg is
i.i.d. U½0; 1�. Intuitively, the U½0; 1� distribution indicates proper specification of the
stationary distribution of rtD, and the i.i.d. property characterizes correct specifica-
tion of its dynamic structure. If fZtðyÞg is not i.i.d. U½0; 1� for all y 2 Y, then
pðr; tDjI ðt�1ÞD; yÞ is not optimal and there exists room for further improvement.
Thus, density forecast evaluation boils down to testing whether fZtðyÞg; which is
often referred to as the ‘‘generalized residuals’’ of the model-implied transition
density pðr; tDjI ðt�1ÞD; yÞ; is i.i.d. U½0; 1�:

It is nontrivial to test the joint hypothesis of i.i.d. U½0; 1� for fZtg
n
t¼1, where

Zt � Ztðy0Þ. One may suggest the well-known Kolmogorov–Smirnov test, which
unfortunately checks U½0; 1� under the i.i.d. assumption rather than tests i.i.d. and
U½0; 1� jointly. It would easily miss the non-i.i.d. alternatives with uniform marginal
distribution. Moreover, the Kolmogorov–Smirnov test cannot be used directly
because it does not take into account the impact of parameter estimation uncertainty
on the asymptotic distribution of the test statistic.

Diebold et al. (1998) use the autocorrelograms of the generalized residuals and
their powers to check the i.i.d. property, and use the histograms to check the U½0; 1�
property. While this approach is simple and informative about possible sources of
suboptimal density forecasts, it is preferable to use a single omnibus evaluation
criteria that takes into account deviations from both i.i.d. and U½0; 1� when
comparing the performances of different models. Otherwise, it would be difficult to
decide which model is better in capturing the full dynamics of the data if the
generalized residuals of one interest rate model have less serial dependence, but
displays more departures from U½0; 1� than the other model.
8One can also use rolling estimation or recursive estimation. We expect that our test procedures are

applicable to these different estimation methods under suitable regularity conditions. However, we do not

provide a formal justification for these estimation procedures in this paper.
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Hong and Li (2005) recently proposed a class of nonparametric tests of the i.i.d.
U½0; 1� hypothesis for in-sample performance of continuous-time models, using the
transition density.9 To apply them to evaluate the out-of-sample performance of
ATSMs, we first extend these tests to the out-of-sample setting tailored to multivariate
continuous-time model. We explicitly consider the impact of parameter estimation
uncertainty and the choice of relative sample sizes between the estimation and prediction
samples on the evaluation procedure, two issues that have been ignored by most of the
existing procedures. The main idea of our procedure is to use the i.i.d. U½0; 1� property
for optimal density forecasts to develop a metric that measures how far a continuous-
time model is away from the true data generating process of the underlying process.

2.2. Nonparametric omnibus evaluation procedure

Following Hong and Li (2005), we measure the distance between a forecast density
model and the true transition density by comparing a kernel estimator ĝjðz1; z2Þ for
the joint density of fZt;Zt�jg with unity, the product of two U½0; 1� densities, where j

is a lag order. One advantage of this approach is that since there is no serial
dependence in fZtg under correct model specification, nonparametric joint density
estimators and related test statistics are expected to perform well in finite samples.
This is appealing because there exists persistent dependence in interest rate time
series data. Another advantage is that there is no asymptotic bias for nonparametric
density estimators under the null hypothesis of correct model specification either,
because the conditional density of Zt given fZt�1;Zt�2; . . .g is uniform (i.e., a
constant). Moreover, our test can also be applied to time-inhomogeneous
continuous-time processes, because fZtg is always i.i.d. U½0; 1� under correct model
specification.10 Simulation studies in Hong and Li (2005) show that the tests perform
well in small samples even for highly persistent financial data.

Our kernel estimator of the joint density is, for any integer j40;

ĝjðz1; z2Þ � ðn� jÞ�1
XL

t¼Rþjþ1

Khðz1; ẐtÞKhðz2; Ẑt�jÞ; 0pz1; z2p1, (2)

where Ẑt ¼ ZtðŷRÞ; ŷR is any
ffiffiffiffi
R
p

-consistent estimator for y0; and Khðz1; z2Þ is a
boundary-modified kernel function defined as follows. For x 2 ½0; 1�; we define

Khðx; yÞ �

h�1kðx�y
h
Þ=
R 1
�ðx=hÞ

kðuÞdu if x 2 ½0; hÞ;

h�1kðx�y
h
Þ if x 2 ½h; 1� h�;

h�1kðx�y
h
Þ=
R ð1�xÞ=h

�1 kðuÞdu if x 2 ð1� h; 1�;

8>>><
>>>:

(3)
9While the transition densities for most continuous-time models have no closed form, many methods

exist in the literature to provide accurate approximations of the transition density (e.g., Ait-Sahalia, 2002;

Ait-Sahalia and Kimmel, 2002; Duffie et al., 2003). This simplifies the computation of the generalized

residuals for continuous-time models.
10Egorov et al. (2003) extend Ait-Sahalia’s (2002) Hermite expansion approach to obtain accurate

closed-form approximation for the transition density of time-inhomogeneous diffusion models.
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where kð�Þ is a prespecified symmetric probability density and h � hðnÞ is a
bandwidth such that h! 0; nh!1 as n!1. Throughout our empirical analysis,
we use the quartic kernel

kðuÞ ¼ 15
16
ð1� u2Þ

21ðjujp1Þ,

where 1ð�Þ is the indicator function. In practice, the choice of bandwidth h is
more important than the choice of the kernel kðuÞ. Like Scott (1992), we
choose h ¼ ŜZn�1=6; where ŜZ is the sample standard deviation of fẐtg

L
t¼Rþ1:

This simple bandwidth rule attains the optimal rate for bivariate kernel density
estimation.

The modified kernel in (3) can automatically deal with the boundary bias problem
associated with standard kernel estimation. As is well known (e.g., Härdle, 1990,
pp. 130–133), a standard kernel density estimator gives biased estimates near the
boundaries of data, because a standard kernel provides an asymmetric coverage of
the data in the boundary regions. In contrast, the weighting functions in the
denominators of Khðx; yÞ for x 2 ½0; hÞ [ ð1� h; 1� account for the asymmetric
coverage and ensure that estimator (2) is asymptotically unbiased uniformly over
the entire support ½0; 1� for the generalized residuals. The modified kernel in (3)
has several advantages over some existing alternative solutions to the boundary
bias problem in the literature. One alternative is to simply ignore the data in the
boundary regions and only use the data in the interior region. Such a trimming
procedure is simple, but in the present context, it would lead to the loss of signifi-
cant amount of information. For a nearly uniformly distributed transformed
sequence fZtg; the data in the boundary region is still about 10% when the sample
size n ¼ 5000 and the bandwidth h ¼ ŜZn�1=6; where ŜZ is the sample standard
deviation of fẐtg

L
t¼Rþ1. For financial time series such as interest rates, one may be

particularly interested in the tail distribution of the underlying process, which is
exactly contained in (and only in) the boundary regions! Alternatively, we can
also use the so-called jackknife kernel to eliminate the boundary bias, as in
Chapman and Pearson (2000) and Diebold et al. (1999). In the present context,
the jackknife kernel, however, has the undesired property that it may generate
negative density estimates in the boundary regions. It also induces a relatively
large variance for the kernel estimates in the boundary regions, adversely affect-
ing the power of the test in finite samples. In contrast, our modified kernel
always produces nonnegative density estimates with a smaller variance in the
boundary regions.

Hong and Li (2005) propose an in-sample specification test that uses a quadratic
form between ĝjðz1; z2Þ and 1, the product of two U½0; 1� densities. This test, when
extended to the out-of-sample context, is given as

Q̂ðjÞ � ðn� jÞh

Z 1

0

Z 1

0

½ĝjðz1; z2Þ � 1�2 dz1 dz2 � hA0
h

� ��
V

1=2
0 ; j ¼ 1; 2; . . . ,

(4)
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where j is a prespecified lag order, the nonstochastic centering and scaling factors

A0
h � ðh

�1
� 2Þ

Z 1

�1

k2
ðuÞduþ 2

Z 1

0

Z b

�1

k2
bðuÞdudb

� �2
� 1,

V0 � 2

Z 1

�1

Z 1

�1

kðuþ vÞkðvÞdv

� �2
du

" #2
ð5Þ

and kbð�Þ � kð�Þ=
R b

�1 kðvÞdv: Note that the modification of the kernel kð�Þ in the
boundary regions affects the centering constant A0

h; although not the asymptotic
variance V 0.

11

We first extend Hong and Li’s (2005) in-sample specification test to an out-of-
sample evaluation procedure in a possibly multivariate continuous-time framework.
Under suitable regularity conditions stated in Appendix, we can show that Q̂ðjÞ !

Nð0; 1Þ in distribution when the continuous-time model is correctly specified (see
Theorem 1 in Appendix). In a simulation experiment mimicking the dynamics of the
U.S. interest rates via the Vasicek model, Hong and Li (2005) find that the in-sample
version of Q̂ðjÞ has good sizes for nX250 (i.e., about 1 year of daily data). This is a
substantial improvement over other nonparametric tests (see Ait-Sahalia, 1996;
Pritsker, 1998).

With various choices of lag order j; Q̂ðjÞ can reveal useful information of at which
lag order significant departures from i.i.d. U½0; 1� occur. This is analogous to the use
of the sample autocorrelation function in the linear time series context. If a large set
of fQ̂ðjÞg is considered, then some of them will probably be significant even if the null
is true, due to statistical sampling variation. In fact, on average 1 out of 20 will be
significant at the 5% level under the null. On the other hand, the choice of lag order j

is expected to have significant impact on the power of Q̂ðjÞ: Moreover, when
comparing two different models, it is desirable to use a single portmanteau test
statistic. For this purpose, we consider the following portmanteau evaluation
statistic

Ŵ ðpÞ ¼
1ffiffiffi
p
p
Xp

j¼1

Q̂ðjÞ. (6)

Like many time series test statistics, we still have to choose the lag truncation order
p: The power of Ŵ ðpÞ is still affected by the choice of p; but not as much as the power
of Q̂ðjÞ is affected by the choice of individual lag order j. We can show that for any p;
Ŵ ðpÞ ! Nð0; 1Þ in distribution when the continuous-time model is correctly
specified. Intuitively, when the forecast model is correctly specified, we have
cov½Q̂ðiÞ; Q̂ðjÞ� ! 0 in probability for iaj as n!1. That is, Q̂ðiÞ and Q̂ðjÞ are
asymptotically independent, whenever iaj. Thus, the portmanteau test statistic
Ŵ ðpÞ is a normalized sum of approximately i.i.d. N(0,1) random variables, and so is
11In Eq. (9) of Hong and Li (2005), a factor of the bandwidth h that should have been multiplied with A0
h

is missing. However, their GAUSS code has incorporated the h factor correctly and therefore all

simulation and empirical results reported in Hong and Li (2005) are not affected.



ARTICLE IN PRESS

A.V. Egorov et al. / Journal of Econometrics 135 (2006) 255–284 265
asymptotically N(0,1). This test may be viewed as a generalization of the popular
Box–Pierce–Ljung type autocorrelation test from a linear time series context to a
continuous-time context with an out-of-sample setting.

Under model misspecification, we can show that as n!1; Q̂ðjÞ ! 1 in
probability whenever fZt;Zt�jg are not independent or U½0; 1�: As long as model
misspecification occurs such that there exists some lag order j 2 f1; . . . ; pg at which
Q̂ðjÞ ! 1; we have Ŵ ðpÞ ! 1 in probability (see Theorem 3 in Appendix).
Therefore, the portmanteau test statistic Ŵ ðpÞ can be used as an omnibus procedure
to evaluate the out-of-sample density forecast performance of a continuous-time
model.12

As an important feature of the test, it is only required that the parameter estimator
ŷR be

ffiffiffiffi
R
p

-consistent. One needs not use asymptotically most efficient estimator. The
sampling variation in estimator ŷR has no impact on the asymptotic distribution of
Q̂ðjÞ or Ŵ ðpÞ: This delivers a convenient procedure in practice, because the
asymptotically most efficient estimators such as maximum likelihood estimation
(MLE) or approximated MLE may be difficult to obtain or implement in practice.
One could choose a suboptimal but convenient estimator in implementing the
procedure.

After a continuous-time model is rejected using either Q̂ðjÞ or Ŵ ðpÞ, it would be
interesting to explore the possible reasons of the rejection. Hong and Li (2005)
develop a class of rigorous separate inference procedures that can utilize the rich
information contained in the generalized residuals fZtðyÞg of a continuous-time
model. We also extend this result to the out-of-sample setting. Specifically, we
consider the following test statistics:

Mðm; lÞ �
Xn�1
j¼1

w2ðj=pÞðn� jÞr̂2mlðjÞ �
Xn�1
j¼1

w2ðj=pÞ

" #,
2
Xn�2
j¼1

w4ðj=pÞ

" #1=2
,

(7)

where r̂mlðjÞ is the sample cross-correlation between Ẑ
m

t and Ẑ
l

t�jjj, and wð�Þ is a
weighting function for the lag orders fjg.13 The tests Mðm; lÞ are an extension of
Hong’s (1996) spectral density tests for the adequacy of discrete-time linear dynamic
models. Extending the proof of Hong (1996), we can show that for each given pair of
12We note that one could also construct a w2 test, such as ĈðpÞ ¼
Pp

j¼1Q̂
2
ðjÞ: Under the same conditions

as for Ŵ ðpÞ, the statistic ĈðpÞ is asymptotically w2 with p degrees of freedom when the forecast model is

optimal. However, we expect that it is less powerful than Ŵ ðpÞ; because the latter exploits the one-sided

nature of the Q̂ðjÞ statistic under the alternative hypothesis (i.e., Q̂ðjÞ ! 1 in probability under model

misspecification).
13We assume that wð�Þ is symmetric around 0 and continuous on the real line except for a finite number

of points. An example is the Bartlett kernel wðzÞ ¼ ð1� jzjÞ1ðjzjp1Þ. If wð�Þ has bounded support, p is a lag

truncation order; if wð�Þ has unbounded support, all n� 1 lags in the sample are used. Usually wð�Þ

discounts higher-order lags. This will give better power than equal weighting when jrmlðjÞj decays to 0 as

lag order j increases. This is typically the case for most financial markets, where more recent events tend to

have bigger impact than the remote past events.



ARTICLE IN PRESS

A.V. Egorov et al. / Journal of Econometrics 135 (2006) 255–284266
positive integers ðm; lÞ

Mðm; lÞ ! Nð0; 1Þ in distribution

under correct model specification, provided the lag truncation order p � pðnÞ !

1; p=n! 0:Moreover, parameter estimation uncertainty in ŷR has no impact on the
asymptotic distribution of Mðm; lÞ. Although the moments of the generalized
residuals fZtg are not exactly the same as that of the original data frtDg; they are
highly correlated. In particular, the choice of ðm; lÞ ¼ ð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð4; 4Þ is very
sensitive to autocorrelations in level, volatility, skewness, and kurtosis of frtDg,
respectively (see, e.g., Diebold et al., 1998). Furthermore, the choice of ðm; lÞ ¼ ð1; 2Þ
and ð2; 1Þ is sensitive to ARCH-in-mean and leverage effects, respectively. Different
choices of orders ðm; lÞ can thus examine various dynamic aspects of the underlying
process. Like Q̂ðjÞ, upper-tailed N(0,1) critical values are suitable for Mðm; lÞ:
3. Density forecast in affine term structure models

We now apply the evaluation procedure described in Section 2 to the ATSMs,
given their important roles in the academic literature and industry practice.

In ATSMs, a finite number of state variables drive the evolution of the whole yield
curve. By assuming that the state variables follow affine diffusions, ATSMs can
generate rich term structure dynamics while still allowing closed-form pricing for a
wide variety of fixed-income securities (e.g., Duffie et al., 2000; Chacko and Das,
2002). Therefore, if these models can provide accurate forecasts of the joint
probability density of the state variables, they can forecast the evolution of the whole
yield curve and will be useful for managing the large fixed-income holdings of many
banks. While ATSMs have been widely studied in the literature, there is little work
on testing their out-of-sample forecast performance. Our empirical work will help fill
this gap in the literature.
3.1. Affine term structure models

In ATSMs, it is assumed that the spot rate rðtÞ is an affine function of N latent
state variables X ðtÞ ¼ ½X 1ðtÞ;X 2ðtÞ; . . . ;X N ðtÞ�

0:

rðtÞ ¼ d0 þ d0X ðtÞ, (8)

where d0 is a scalar and d is an N � 1 vector. In the absence of arbitrage
opportunities, the time t-price of a zero-coupon bond that matures at tþ tm ðtm40Þ
equals

Pðt; tmÞ ¼ E
Q
t exp �

Z tþtm

t

rðsÞds

� �� �
,

where the expectation E
Q
t ð�Þ is taken under the risk-neutral measure Q. Thus,

the whole yield curve is determined by X ðtÞ; which follows an affine diffusion under
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the risk-neutral measure:

dX ðtÞ ¼ ~k ~y� X ðtÞ
� �

dtþ SSt d ~W ðtÞ, (9)

where ~W t is an N � 1 independent standard Brownian motion under measure Q; ~k,
and S are N �N matrices, and ~y is an N � 1 vector. The matrix St is diagonal with
ði; iÞth elements

StðiiÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai þ b0iX ðtÞ

q
; i ¼ 1; . . . ;N, (10)

where ai is a scalar and bi is an N � 1 vector.
Under assumptions (8)–(10),, the yields of zero-coupon bonds, Y ðX t; tmÞ �

�ð1=tmÞ logPðX t; tmÞ; are an affine function of the state variables:

Y ðX t; tmÞ ¼
1

tm

½�AðtmÞ þ BðtmÞ
0X ðtÞ�,

where the scalar function Að�Þ and the N � 1 vector-valued function Bð�Þ either have
a closed form or can be easily solved via numerical methods.

Completely ATSMs of Dai and Singleton (2000) assume that the market prices
of risk

Lt ¼ Stl1, (11)

where l1 is an N � 1 vector. This implies that the compensation for risk is a fixed
multiple of the variance of the state vector and the market prices of risk cannot
change signs over time. These restrictions make it difficult to replicate some stylized
facts of historical excess bond returns. Duffee (2002) shows that completely ATSMs
provide poor forecasts of future bond yields and forecast errors are large when the
slope of the term structure is steep. Duffee (2002) extends completely ATSMs to
essentially ATSMs by assuming

Lt ¼ Stl1 þ S�t l2X ðtÞ, (12)

where S�t is an N �N matrix with ði; iÞth elements

S�tðiiÞ ¼
ðai þ b0iX ðtÞÞ

�1=2 if infðai þ b0iX ðtÞÞ40;

0 otherwise;

(
i ¼ 1; . . . ;N

and l2 is an N �N matrix. The essentially ATSMs break down the tight link
between the market prices of risk and the variances of the state variables. In
particular, they allow the market prices of risk to change signs over time.

Under the specifications of Lt in (11) and (12), X ðtÞ is also affine under the
physical measure

dX ðtÞ ¼ ~k ~y� X ðtÞ
� �

dtþ SStLt dtþ SSt dW ðtÞ,

where W ðtÞ is an N � 1 standard Brownian motion under the physical measure.
Dai and Singleton (2000) greatly simplify the econometric analysis of ATSMs by

systematically classifying all admissible N-factor ATSMs into N þ 1 subfamilies,14
14Admissibility means that ai þ b0iX ðtÞX0; for all i and all possible values of X ðtÞ:



ARTICLE IN PRESS

A.V. Egorov et al. / Journal of Econometrics 135 (2006) 255–284268
denoted as AmðNÞ; where m 2 f0; 1; . . . ;Ng is the number of the state variables that
affect the instantaneous variance of X ðtÞ: They also introduce a canonical
representation for AmðNÞ, which has the most flexible specification within each
subfamily, as it either nests or is equivalent (via an invariant transformation) to all
the models in AmðNÞ:

We follow Dai and Singleton (2000) and Duffee (2002) to consider the canonical
forms of the three-factor completely ATSMs Amð3Þ, m ¼ 0; 1; 2; 3; and essentially
ATSMs Emð3Þ; m ¼ 0; 1; 2. In the canonical representation, S is normalized to the
identity matrix and the state vector X ðtÞ is ordered so that the first m elements of
X ðtÞ affect the instantaneous variance of X ðtÞ: Setting ai ¼ 0 for i ¼ 1; . . . ;m and
ai ¼ 1 for i ¼ mþ 1; . . . ;N, we have StðiiÞ ¼ X iðtÞ

1=2 and S�tðiiÞ ¼ 0 for i ¼ 1; . . . ;m;
and StðiiÞ ¼ ½1þ b0iX ðtÞ�

1=2 and S�tðiiÞ ¼ ½1þ b0iX ðtÞ�
�1=2 for i ¼ mþ 1; . . . ;N; where

bi ¼ ðbi1; . . . ; bim; 0; . . . ; 0Þ
0:

As the transition density of an affine model generally has no closed form, MLE is
infeasible. Following Duffee (2002), we estimate model parameters via quasi-MLE,
which is rather convenient for ATSMs because the conditional mean and variance of
X ðtÞ are known in closed form (see Duffee, 2002, for details).15

3.2. Dynamic probability integral transform for ATSMs

The key to evaluate multifactor ATSMs is to compute their generalized residuals.
Suppose we have a time series observations of the yields of N zero-coupon bonds
with different maturities, fY tD;kg

L
t¼1; k ¼ 1; . . . ;N. Assuming that the yields are

observed without error, given a parameter estimator ŷ using the estimation sample

fY tD;kg
R
t¼1; k ¼ 1; . . . ;N; we can solve for the underlying state variables fX tD;kg

L
t¼1;

k ¼ 1; . . . ;N: To examine whether the model transition density pðX tDjI ðt�1ÞD; yÞ
of X tD given I ðt�1ÞD � fX ðt�1ÞD; . . . ;XDg under the physical measure provides

accurate forecasts of the joint density of the process X ðtÞ; we can test whether the

probability integral transforms of fY tD;kg
L
t¼Rþ1; k ¼ 1; . . . ;N; with respect to the

model-implied transition density is i.i.d. U½0; 1�.
There are different ways to conduct the probability integral transform for ATSMs.

Following Diebold et al. (1999), we partition the joint density of the N different
yields ðY tD;1; . . . ;Y tD;N Þ at time tD under the physical measure into the products of N

conditional densities,

p Y tD;1;Y tD;2; . . . ;Y tD;N jI ðt�1ÞD; ŷ
	 


¼
YN
k¼1

p Y tD;kjY tD;ðk�1Þ; . . . ;Y tD;1; I ðt�1ÞD; ŷ
	 


,

where the conditional density pðY tD;kjY tD;ðk�1Þ; . . . ;Y tD;1; I ðt�1ÞD; ŷÞ of Y tD;k depends
on not only the past information I ðt�1ÞD but also fY tD;lg

k�1
l¼1 , the yields at tD with
15We could also use other estimation methods, such as the EMM method of Gallant and Tauchen

(1996), the approximated MLE of Ait-Sahalia and Kimmel (2002) and Duffie et al. (2003), the simulated

MLE of Pedersen (1995) and Brandt and Santa-Clara (2002), and the empirical characteristic function

method of Singleton (2001) and Jiang and Knight (2002).
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shorter maturities.16 We then transform the yield Y tD;k via its corresponding model-
implied transition density

Z
ð1Þ
t;kðŷÞ ¼

Z Y tD;k

0

p yjY tD;ðk�1Þ; . . . ;Y tD;1; I ðt�1ÞD; ŷ
	 


dy; k ¼ 1; . . . ;N. (13)

This approach produces N generalized residual samples, fZ
ð1Þ
t;kðŷÞg

L
t¼1; k ¼ 1; . . . ;N.

We can use fZ
ð1Þ
t;kðŷÞg

R
t¼1 and fZ

ð1Þ
t;kðŷÞg

L
t¼Rþ1 to evaluate the in-sample and out-of-

sample performances of ATSMs in capturing the dynamics of the kth yield,
respectively. For each k, both series should be approximately i.i.d. U½0; 1� under
correct model specification.

We can also combine the N generalized residuals fZ
ð1Þ
t;kðŷÞg

L
t¼1 in (13) in a suitable

manner to generate a long sequence, which we may call the combined generalized
residuals of an ATSM. Define

U ¼ ðYD;1;YD;2; . . . ;YD;N ;Y 2D;1;Y 2D;2; . . . ;Y 2D;N ; . . . ;Y LD;1;Y LD;2; . . . ;Y LD;NÞ.

We can then conduct the probability integral transforms of U t with respect to the
model-implied transition density that depends on all the past yields and
contemporaneous yields with shorter maturities:

Zð2Þt ðŷÞ ¼
Z Ut

0

pðyjU t�1; . . . ;U1; ŷÞdy; t ¼ 1; . . . ;LN. (14)

We could use fZð2Þt ðŷÞg
RN
t¼1 and fZð2Þt ðŷÞg

LN
t¼RNþ1 to measure the in-sample and

out-of-sample performances of ATSMs, respectively. Both series should also
be approximately i.i.d. U½0; 1� under correct model specification and can be
used to check the overall performance of an ATSM. In contrast, each indivi-
dual sequence of generalized residuals fZ

ð1Þ
t;kg

L
t¼Rþ1 in (13) can be used to check

the performance of an ATSM in forecasting the probability density of each
individual yield.

Because the transition density has no closed form for most ATSMs, we use
the simulation methods of Pedersen (1995) and Brandt and Santa-Clara (2002)
to obtain an approximation for the transition density. This method is applicable
to not only affine diffusion models, but also to other general multivariate
diffusion models. We could use other approximation methods mentioned earlier
(see footnote 15).

In the empirical analysis below, we will focus on the performance of ATSMs in
forecasting the joint conditional density of the state variables under the physical
measure. While the conditional density under the risk-neutral measure is more
16In general, there are N! ways of factoring the joint transition density of yields with different maturities.

In our application, the transition density of the yields of long-term bonds depend on the contemporaneous

yields of shorter maturity bonds, because the short end of the yield curve is generally more sensitive to

various economic shocks and is more volatile. In fact, one is often interested in knowing how short-term

interest rate movements, which may be initiated or changed by the central banks, can be transmitted into

long-term interest rate movements.
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relevant for the pricing purpose, the density under the physical measure is more
important for financial risk management. For example, to calculate the VaR of a
large fixed-income portfolio over a certain horizon, one needs to forecast the
probability distribution of the value of the portfolio under the physical measure. In
ATSMs, a finite number of state variables determine the evolution of the whole yield
curve and thus the prices of most fixed-income securities. Consequently, under the
physical measure, if we can accurately forecast the joint conditional density of the
state variables, we would also be able to forecast the conditional distribution of the
prices of most fixed-income securities, which is particularly important for VaR
calculation.
4. Empirical results

Our empirical analysis focuses on monthly yields of zero-coupon bonds with 6-
month, 2 and 10 year maturities from January 1952 to December 1998, the same data
as used in Duffee (2002). The zero-coupon bond yields are interpolated from coupon
bond prices using the method of McCulloch and Kwon (1993), whose sample has
been extended by Bliss (1997) beyond February 1991. We choose the first half of the
sample (from January 1952 to June 1975) as the estimation sample and the second
half (from July 1975 to December 1998) as the forecast sample. Fig. 1 displays the
time series plots of the level, change, and squared change series of the three yields. It
is clear that in the second half of the sample, both the level and change series of the
three yields exhibit higher mean and volatility, stronger volatility clustering, and
more extreme positive and negative moves.

We estimate the seven ATSMs using the three yields from the first half of the
sample via QMLE.17 In addition, we also consider two simple random walk models,
denoted as RW1 and RW2, in which yield changes follow multivariate random walks
with correlated increments with and without drift, respectively.18 Based on the
estimated parameters, we calculate the in-sample generalized residuals fZ

ð1Þ
t;kðŷÞg

R
t¼1 in

(13), for the 6-month ðk ¼ 1Þ, 2-year ðk ¼ 2Þ; and 10-year ðk ¼ 3Þ yields, and the
combined generalized residuals fZð2Þt ðŷÞg

RN
t¼1 in (14). The in-sample performance

of the nine models are measured by Ŵ ðpÞ for p ¼ 5; 10, and 20 in columns 3–5 of
Table 1.

We first examine the overall model performance measured by Ŵ ðpÞ for the
combined generalized residuals. One of the most important results is that all models
are overwhelmingly rejected by our tests, suggesting that none of them can
adequately capture the full dynamics of the three yields. Among the seven ATSMs,
A0ð3Þ has the best overall performance with a Ŵ ð5Þ statistic around 44. The models
17We assume that the three yields are observed without error and use them to infer the state variables

X ðtÞ. Duffee (2002) also includes three other yields which are observed with measurement errors in his

estimation.
18We also consider random walk models with uncorrelated increments. But they generally have worse

performance than the models shown here.
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Fig. 1. Time series plots of level, change, and squared change of monthly 6-month, 2- and 10-year yields:

(a) 6-month yields; (b) 2-year yields; (c) 10-year yields; (d) change in 6-month yields; (e) change in 2-year

yields; (f) change in 10-year yields; (g) squared change (6-month); (h) squared change (2-year); (i) squared

change (10-year).
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Table 1

Nonparametric portmanteau statistics for in-sample and out-of-sample performance of affine and random

walk models

Model Maturity In-sample Out-of-sample

W ð5Þ W ð10Þ W ð20Þ W ð5Þ W ð10Þ W ð20Þ

A0ð3Þ Combined 44.12 47.92 57.59 80.05 100.90 129.86

6-month 19.39 24.55 33.21 64.57 88.87 119.80

2-year 4.69 5.76 8.51 10.95 14.89 16.50

10-year 8.80 11.01 14.04 16.07 22.53 28.89

A1ð3Þ Combined 51.19 56.82 64.37 73.81 91.75 115.47

6-month 20.15 26.34 35.19 16.01 21.17 29.10

2-year 6.94 8.08 8.12 12.50 16.73 21.96

10-year 3.07 4.01 4.74 33.03 43.49 55.90

A2ð3Þ Combined 69.49 83.35 102.35 149.34 196.82 265.65

6-month 36.30 49.46 67.67 44.06 61.36 82.35

2-year 13.96 17.82 22.24 44.04 61.23 83.31

10-year 6.51 9.35 11.05 57.84 78.41 102.56

A3ð3Þ Combined 105.73 139.59 188.10 112.81 150.63 198.71

6-month 69.84 95.23 127.08 44.22 58.93 78.43

2-year 24.26 32.34 41.00 21.52 29.08 39.24

10-year 19.02 24.70 33.34 56.86 76.95 100.41

E0ð3Þ Combined 63.09 70.90 82.77 71.65 83.65 99.77

6-month 14.78 19.16 27.27 23.69 31.96 42.63

2-year 11.48 15.21 22.84 12.76 16.23 16.56

10-year 10.25 13.67 18.73 13.34 18.19 21.83

E1ð3Þ Combined 51.95 57.43 64.85 57.44 69.39 86.32

6-month 18.20 23.65 31.42 12.50 16.17 22.47

2-year 6.28 8.00 8.07 7.38 9.38 13.03

10-year 2.20 3.39 3.60 27.64 35.90 46.21

E2ð3Þ Combined 56.27 66.38 80.82 157.06 208.92 283.89

6-month 28.99 40.27 55.74 40.94 57.04 75.68

2-year 14.67 18.62 23.84 56.69 78.87 107.06

10-year 2.08 2.69 2.13 64.44 86.54 112.12

RW1 Combined 50.06 69.12 91.45 118.35 161.87 218.20

6-month 19.31 25.89 35.53 17.27 22.90 30.94

2-year 16.37 19.42 22.58 30.99 44.72 63.56

10-year 26.54 32.84 36.68 82.88 118.55 170.51

RW2 Combined 48.96 80.31 97.79 139.43 181.73 240.66

6-month 18.31 24.41 33.60 16.03 21.25 28.38

2-year 15.34 12.60 14.86 34.54 49.70 70.03

10-year 23.65 15.79 20.57 91.99 130.84 187.31

This table reports the nonparametric portmanteau statistics W ðpÞ defined in Eq. (7), p ¼ 5; 10, and 20, for

in-sample and out-of-sample performance of completely and essentially affine models and the random

walk models. The estimation sample is from January 1952 to June 1975, and the forecast sample is from

July 1975 to December 1998. RW1 is a random walk model with correlated increments but no drift. RW2

is a random walk model with correlated increments and drift. The W ðpÞ statistics have a standard normal

distribution.
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A1ð3Þ and E1ð3Þ have slightly worse performance, with Ŵ ð5Þ statistics around 51.19

The models A2ð3Þ, E2ð3Þ, and E0ð3Þ have Ŵ ð5Þ statistics range from 56 to 69, and
A3ð3Þ has the worst performance with a Ŵ ð5Þ statistic around 105. While the Ŵ ð5Þ
statistics of the two RW models are comparable to those of A1ð3Þ and E1ð3Þ, their
Ŵ ð10Þ and Ŵ ð20Þ statistics are much higher. TheŴ ðpÞ statistics for the individual
generalized residuals in Table 1 show that the models with the best overall
performance, such as A0ð3Þ; A1ð3Þ, and E1ð3Þ; also capture each individual yield
better than other models. Moreover, most of the above models capture the 2- and 10-
year yields much better than the 6-month yields, which could be due to the fact that
the 6-month yields are more sensitive to Federal Reserve policies and thus are more
volatile than the 2- and 10-year yields.

The relative good in-sample performance of the Gaussian models (A0ð3Þ and RWs)
are consistent with the well-known trade-offs in ATSMs between modeling the
conditional volatilities and correlations of bond yields.20 The trade-offs suggest that
A0ð3Þ has the greatest flexibility (difficulty) in modeling the conditional correlation
(volatility) of the bond yields due to its Gaussian state variables. In contrast, A3ð3Þ is
most flexible in modeling the time varying volatility of the bond yields because each
of its state variables follows a square-root process. However, to ensure that X ðtÞ is
positive, the correlations among the state variables must be positive in A3ð3Þ. Given
that the bond yields in the first half of the sample do not exhibit high-volatility and
strong-volatility clustering, the disadvantages (advantages) of A0ð3Þ (A1ð3Þ) become
much less important for model performance. The in-sample results also show that
the sophisticated market prices of risk in the essentially ATSMs do not necessarily
improve the modeling of the conditional density of the bond yields. While certain
essentially affine models outperform their completely affine counterparts, the
opposite happens for other essentially affine models.

In addition to Ŵ ðpÞ, we also separately examine the U½0; 1� and i.i.d. properties of
the generalized residuals. Fig. 2 displays the kernel estimators of the marginal
densities of the individual and combined generalized residuals of A0ð3Þ, A1ð3Þ; A2ð3Þ,
and RW1.21 The Gaussian models (RW1 and A0ð3Þ) fail to capture the heavy tails of
all three yields: the marginal densities of all the generalized residuals exhibit high
peaks at both ends (especially the left end) of the distribution. On the other hand, the
marginal densities of the non-Gaussian models (A1ð3Þ and A2ð3Þ) exhibit high peaks
in the center of the distribution, particularly for the 6-month and 2-year yields,
19For both in-sample and out-of-sample empirical studies, we compare the relative performance

between any two models based on their distances to the true data generating process. Strictly speaking, to

assess the statistical significance of the relative performance between two potentially misspecified models,

we should develop a Diebold and Mariano’s (1995) type test. The derivation of the asymptotic distribution

for such a test statistic is not trivial in the present context, because nonparametric estimation is involved.

The approach by Corradi and Swanson (2004) is expected to be useful here. We leave this to future

research.
20For more detailed discussions on the trade-offs in ATSMs, see Dai and Singleton (2000).
21The marginal densities of E2ð3Þ and A3ð3Þ are very similar to that of A2ð3Þ, while the marginal densities

of E0ð3Þ and E1ð3Þ are similar to those of A0ð3Þ and A1ð3Þ, respectively. The two RWmodels also have very

similar marginal densities. Similar results also hold for the second half of the sample.
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suggesting that A1ð3Þ and A2ð3Þ underpredict the likelihood of small changes.
Consistent with the Ŵ ðpÞ statistics in Table 1, the generalized residuals of A0ð3Þ and
A1ð3Þ are closer to U½0; 1� than those of other models, and in all models the marginal
densities of the generalized residuals of the 2- and 10-year yields are much closer to
U½0; 1� than that of the 6-month yields.

The Mðm; lÞ statistics in Panel A of Table 2 summarize the performance of each
model in capturing the dynamic dependence of the generalized residuals of all yields.
It is obvious that all models, especially the Gaussian models (A0ð3Þ, E0ð3Þ, and the
RW models), fail to capture the dependence in the conditional variance and kurtosis
of the generalized residuals: the Mð2; 2Þ and Mð4; 4Þ statistics are large and
overwhelmingly significant for all yields. All models have better performance for the
ARCH-in-mean effect (Mð1; 2ÞÞ and the ‘‘leverage’’ effect (Mð2; 1ÞÞ for all yields.
While the RW models underperform the ATSMs in modeling the conditional
variance and kurtosis of the generalized residuals, they capture the dependence in the
conditional mean and skewness of the generalized residuals better than the ATSMs,
especially for the 6-month yields.

Based on the parameter estimates from the first half of the sample, we calculate the
individual and combined generalized residuals using the second half of the sample
for each model. These generalized residuals allow us to examine the performance of
all models in forecasting the joint probability density of future bond yields. The out-
of-sample Ŵ ðpÞ statistics in columns 6–8 of Table 1 are generally higher that the in-
sample counterparts for all models, which should not be surprising given that the
models are estimated using only the first half of the sample. The differences between
in-sample and out-of-sample performances are quite dramatic for the Gaussian
models. While A0ð3Þ has the best in-sample performance, it underperforms A1ð3Þ and
E1ð3Þ in density forecasts. While the RW models have comparable in-sample
performance as A1ð3Þ and E1ð3Þ; they have much worse out-of-sample performance,
with Ŵ ð5Þ statistics between 120 and 140. In contrast, A1ð3Þ and E1ð3Þ; which are
among the best in-sample models, also have the best out-of-sample performance. In
fact, E1ð3Þ has the smallest out-of-sample Ŵ ð5Þ, which is around 57. As the bond
yields become much more volatile and exhibit stronger volatility clustering in the
second half of the sample, models that are flexible in capturing both time varying
volatilities and correlations of the bond yields, such as A1ð3Þ and E1ð3Þ, should have
better performance. The models A2ð3Þ;E2ð3Þ, and A3ð3Þ are among the worst out-of-
sample models, with Ŵ ð5Þ statistics range from 120 to 150, which are similar to those
of the RW models. Consistent with their overall performance, A1ð3Þ and E1ð3Þ also
have the best density forecasts for each individual yield. The E1ð3Þ model captures
the 2-year yields particularly well with Ŵ ðpÞ statistics in single digits. But it is
difficult to capture the 6-month and 10-year yields in all models.

To better understand the possible reasons of suboptimal density forecasts for
ATSMs, we separately examine the U½0; 1� and i.i.d. properties of the generalized
residuals. Fig. 3 displays the kernel estimators of the marginal densities for the
generalized residuals of A0ð3Þ;A1ð3Þ, A2ð3Þ and RW1. Consistent with the out-of-
sample Ŵ ðpÞ statistics, we find that the generalized residuals become much more
nonuniform in the second half of the sample. For example, the high peaks at both
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Table 2

Separate inference statistics for affine and random walk models

Model Maturity M(1,1) M(1,2) M(2,1) M(2,2) M(3,3) M(4,4)

Panel A: In-sample performance (January 1952 to June 1975)

A0ð3Þ 6-month 3.39 4.33 0.16 25.73 1.44 20.65

2-year 0.60 1.17 4.65 29.06 1.55 30.73

10-year 1.80 �0.74 1.22 23.80 3.44 26.80

A1(3) 6-month 4.91 4.42 �0.33 11.30 2.51 10.92

2-year 4.70 �0.79 1.70 22.36 �0.004 22.96

10-year �0.29 �1.35 �0.24 20.61 �0.21 24.52

A2ð3Þ 6-month 5.07 3.65 1.16 4.97 2.64 4.25

2-year 0.60 �0.04 0.81 15.37 �0.25 17.42

10-year 0.22 �0.04 0.66 12.22 �0.31 15.24

A3ð3Þ 6-month 9.03 3.40 0.61 15.03 4.34 11.00

2-year 0.37 �0.10 2.06 22.01 0.82 15.52

10-year �0.06 �1.16 �0.76 15.67 1.35 18.81

E0ð3Þ 6-month 6.69 �1.35 4.90 69.01 7.35 91.57

2-year 4.19 0.61 �1.06 10.82 2.64 20.73

10-year 2.64 �0.38 �0.65 30.50 2.41 43.69

E1ð3Þ 6-month 4.16 4.90 �0.01 15.41 2.26 13.34

2-year 0.72 �0.63 1.38 25.21 0.27 25.25

10-year 0.45 �1.41 �0.12 23.30 0.02 24.84

E2ð3Þ 6-month 4.37 5.08 1.60 7.06 2.69 5.43

2-year 0.53 �0.28 1.16 20.26 �0.26 19.08

10-year 0.51 �0.51 1.14 15.03 �0.25 15.86

RW1 6-month 1.33 3.20 0.17 36.29 0.34 28.89

2-year 3.20 �0.28 0.34 52.97 6.05 46.44

10-year 9.09 �0.53 �1.04 31.46 10.73 35.89

RW2 6-month 1.21 3.03 0.058 37.39 0.42 29.99

2-year 3.20 �0.50 0.43 52.58 6.03 45.81

10-year 8.80 �0.33 �0.13 28.67 10.79 34.16

Panel B: Out-of-sample performance (July 1975 to December 1998)

A0ð3Þ 6-month 8.33 �1.58 8.45 104.59 10.43 131.11

2-year 3.22 1.17 �0.34 7.10 2.35 16.64

10-year 0.23 0.58 0.05 31.24 0.04 45.79

A1ð3Þ 6-month 9.77 �0.63 15.51 87.66 12.40 119.07

2-year 5.77 �0.24 8.12 34.5 5.26 54.23

10-year 3.55 1.28 14.97 79.26 5.33 92.81

A2ð3Þ 6-month 9.78 0.49 18.78 96.44 9.65 110.07

2-year 4.21 �0.40 9.70 45.53 5.82 61.57

10-year 0.96 1.74 12.46 80.88 4.14 84.47

A3ð3Þ 6-month 16.39 �0.94 16.07 81.87 13.81 83.09

2-year 10.85 �0.41 0.37 1.65 5.09 4.46

10-year 13.13 0.45 2.68 14.35 5.64 12.46

E0(3) 6-month 3.11 5.02 0.09 28.31 1.10 25.57

2-year 0.56 1.51 4.25 46.84 0.16 40.86

10-year 0.52 �0.62 1.08 38.04 1.30 34.14

E1ð3Þ 6-month 11.32 �0.63 15.36 77.48 12.59 106.06

2-year 3.88 �0.45 8.44 26.11 3.18 45.20

10-year 2.60 1.96 18.42 73.05 3.46 86.26

E2 (3) 6-month 11.85 0.07 19.19 86.14 9.56 93.46

A.V. Egorov et al. / Journal of Econometrics 135 (2006) 255–284276



ARTICLE IN PRESS

Table 2 (continued )

Model Maturity M(1,1) M(1,2) M(2,1) M(2,2) M(3,3) M(4,4)

2-year 5.27 �0.76 12.65 36.84 5.14 49.46

10-year 2.40 1.88 13.06 49.77 2.26 49.06

RW1 6-month 4.45 �1.03 �0.11 40.21 3.04 48.29

2-year 2.27 �1.09 �0.53 0.013 2.23 0.83

10-year �0.32 �1.26 0.038 6.13 0.53 8.25

RW2 6-month 4.49 �0.96 0.099 38.51 3.05 48.0

2-year 2.24 �1.08 �0.49 0.15 2.39 0.96

10-year �0.30 �1.24 0.12 4.63 0.55 6.87

This table reports the separate inference statistics Mðm; lÞ in (I.10) for completely and essentially affine

models and the random walk models. The statistic Mðm; lÞ can be used to test whether the cross-

correlation between the mth and lth moments of fZtDg is significantly different from zero. The choice of

ðm; lÞ ¼ ð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð4; 4Þ is very sensitive to autocorrelations in mean, variance, skewness, and

kurtosis of fY tDg, respectively. We only show results for lag truncation order p ¼ 20, the results for p ¼ 10

and 30 are similar. RW1 is a random walk model with correlated increments but no drift. RW2 is a

random walk model with correlated increments and drift.
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ends of the marginal densities of the RW models become more pronounced,
suggesting that the RW models fail to capture the heavy tails of the marginal
distribution given that the bond yields exhibit much higher volatility and more
extreme positive and negative moves in the second half of the sample. The kernel
estimators of the marginal densities of all other ATSMs again exhibit high peaks in
the center of the distribution. While all models are far from perfect, A1ð3Þ seems to
capture the uniform distribution properties of most generalized residuals better than
other models.

However, A1ð3Þ and E1ð3Þ still have difficulties in modeling the dynamic aspects of
the bond yields as measured by the Mðm; lÞ statistics in Panel B of Table 2. For
example, all the ATSMs fail to capture all serial dependence in the conditional mean,
variance, skewness, and kurtosis of the generalized residuals of all the yields.
Interestingly, the two RW models have much better performance in capturing most
of the dynamic aspects of the generalized residuals. Except for Mð2; 2Þ and Mð4; 4Þ
for the 6-month yields, the Mðm; lÞ statistics for the RW models are all quite small.
This shows that the advantages of the sophisticated ATSMs are in modeling the
marginal distribution rather than the serial dependence of the generalized residuals.
This is consistent with the important finding of Duffee (2002) that the simple random
walk models outperform all the completely ATSMs in predicting the conditional
mean of future bond yields.

Our empirical analysis documents some interesting results on the out-of-sample
performance of the ATSMs. While the RW models tend to have better forecasts for
the conditional mean dynamics of the bond yields, we find that some ATSMs have
better forecasts for the probability density of the bond yields. For example, we find
that A1ð3Þ and E1ð3Þ are not only among the best in-sample models, but also have the
best out-of-sample density forecasts. In contrast, although the RW models have
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Fig. 3. Nonparametric marginal density of the combined and individual generalized residuals (out-of-

sample): (a) marginal density (combined); (b) marginal density (6-month); (c) marginal density (2-years);

(d) marginal density (10-years).
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comparable in-sample performance as A1ð3Þ and E1ð3Þ; they provide much worse
density forecasts. Diagnostic analysis shows that while the best ATSMs capture the
marginal densities of the bond yields better, the RW models have advantages in
modeling the serial dependence in the bond yields, particularly, the serial dependence
of odd-order conditional moments of the generalized residuals. While the answer to
the question raised in the title of this paper is a definite ‘‘yes,’’ we emphasize that all
the ATSMs considered still fail to provide satisfactory density forecasts for the bond
yields. Part of the poor performance could be due to the dramatic differences
between the two samples, which suggest that regime-switching models might perform
better for this data. The reasonably good performance of the RW models in
capturing the dynamic dependence in the bond yields suggests that more
sophisticated time series models, such as those with more flexible specifications of
the error term or dependence structures in various conditional moments, might be
able to provide better density forecasts than the affine models.
5. Conclusion

The affine term structure models have become one of the most popular term
structure models in the literature due to their rich model specification and
tractability. In spite of the numerous empirical studies of the ATSMs, little effort
has been devoted to examining their out-of-sample performance in forecasting future
bond yields. In this paper, we have contributed to the literature by providing
probably the first comprehensive empirical analysis of the performance of three-
factor completely and essentially ATSMs in forecasting the joint conditional
probability density of bond yields. Density forecasts of bond yields are important for
many financial applications, such as pricing and hedging fixed-income securities and
managing interest rate risk. Using a new nonparametric omnibus procedure for
density forecast evaluation tailored for ATSMs, we find that although the random
walk models tend to have better forecasts of the conditional mean of the bond yields,
some ATSMs provide better forecasts of the joint probability density of the bond
yields. However, all ATSMs we consider are still overwhelmingly rejected and none
of them can provide satisfactory density forecasts. There exists room for further
improving the density forecasts for future bond yields by extending ATSMs. This is
left for future investigation.
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Appendix A. Mathematical appendix

We consider evaluation of density forecasts for a multivariate continuous-time
process Y ðtÞ some of whose components are latent variables. Throughout, we use C

to denote a generic bounded constant, j � j to denote the usual Euclidean norm. We
first provide regularity conditions.

Assumption A.1. Let ðO;F;PÞ be a complete probability space. (i) Y ðtÞ � Y ðt;oÞ,
where o 2 O and t 2 ½0;T � � Rþ, is a stationary multidimensional continuous-time
process with a well-defined transition density that may not have a closed form; (ii) a
discrete sample fX tDg

L
t¼1 of the observable subvector X ðtÞ of Y ðtÞ is observed, where

D is a fixed sample interval and L is the sample size.

Assumption A.2. Let M ¼ fmðyÞ; y 2 Yg be a class of multivariate continuous-time
model for Y ðtÞ, where Y is a finite-dimensional parameter space. (i) For each y 2 Y,
pðx; tjIs; s; yÞ is the transition density of the observable subvector X ðtÞ implied by a
multivariate continuous-time model mðyÞ for fY ðtÞg, where I s is the observed
information set for X ðtÞ available at time sot; (ii) for each y 2 Y; pðx; tjIs; s; yÞ is a
measurable function of ðx; IsÞ, and there exists y0 2 Y such that pðx; tjIs; s; y0Þ
coincides with the true transition density of X ðtÞ; (iii) with probability 1, pðx; tjIs; s; �Þ
is twice-continuously differentiable with respect to y in a neighborhood Y0 of
y0 2 Y; (iv) put ZtðyÞ ¼

RX tD

�1
pðx; tjI ðD�1Þt; ðD� 1Þt; yÞdx. Then

lim
n!1

1

n

XL

t¼Rþ1

E sup
y2Y0

q
qy

Ztðy0Þ
����

����
2n

pC

for some constant n41 and

lim
n!1

1

n

XL

t¼Rþ1

E sup
y2Y0

q2

qyqy0
Ztðy0Þ

����
����
2

pC,

where n � L� R.
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Assumption A.3. (i) Gt�1ðzÞ � E½ðq=qyÞZtðy0ÞjZtðy0Þ ¼ z; I ðt�1ÞD� is a stationary
measurable function of (z; I ðt�1ÞDÞ; (ii) with probability 1, Gt�1ðzÞ is continuously
differentiable with respect to z, and limn!1n�1

PL
t¼Rþ1EjG

0
t�1½Ztðy0Þ�j2 pC.

Assumption A.4. fX tD; ðq=qyÞZtðy0Þg0 is a stationary strong mixing process with
strong mixing coefficient aðjÞ satisfying

P1
j¼0aðjÞ

ðn�1Þ=npC, where n41 is as in
Assumption A.2.

Assumption A.5. ŷR � ŷðfX tDg
R
t¼1Þ 2 Y is a parameter estimator based on the first

subsample fX tDg
R
t¼1 such that R1=2ðŷR � y�Þ ¼ OPð1Þ; where y� � p limR!1ŷR is an

interior element in Y and y� ¼ y0 under correct model specification.

Assumption A.6. The kernel function k : ½�1; 1� ! Rþ is a symmetric, bounded, and
twice continuously differentiable probability density such that

R 1
�1

kðuÞdu ¼ 1,R 1
�1 ukðuÞdu ¼ 0, and

R 1
�1 u2kðuÞduo1.

Assumption A.7. (i) The bandwidth h ¼ cn�d for c 2 ð0;1Þ and d 2 ð0; 1
5
Þ, where

n � L� R; (ii) nl=R! 0, where lomax½1� d; 1
2
ð1þ 5dÞ; ð5� 2=nÞd�.

Assumption A.8. For each integer j40; the joint density gjðz1; z2Þ of the transformed
random vector fZt;Zt�jg; where Zt � Ztðy

�
Þ and y� is as in Assumption A.5, exists

and is continuously differentiable on ½0; 1�2.

Assumption A.1 is a regularity condition on the data-generating process fY ðtÞg; we
allow the stationary multivariate process Y ðtÞ to be time-inhomogeneous with jump
components, and some components of Y ðtÞ to be unobservable. Assumptions A.2
and A.3 are regularity conditions on the transition density pðx; tjIs; s; yÞ of the
observable subvector X ðtÞ implied by a multivariate continuous-time model for X ðtÞ:
We do not require pðx; tjI s; s; yÞ has a closed form. Many methods available in the
literature can be used to obtain accurate approximations for the model-implied
transition density. Assumption A.4 characterizes temporal dependence in
fX tD; ðq=qyÞZtðy0Þg: The strong mixing condition is often used in nonlinear time
series analysis, as is the case here. For the definition of the strong mixing condition,
see (e.g.) White (1984, p. 45). We note that although fZtðy0Þg is i.i.d. when the
multivariate continuous-time model is correctly specified, the sequence of its
gradients, fðq=qyÞZtðy0Þg is no longer i.i.d. In general, the gradient ðq=qyÞZtðy0Þ
depends on the past information set I ðt�1ÞD: Assumption A.5 allows for any in-
sample R1=2-consistent estimator for y0 under correct model specification, which
need not be asymptotically most efficient. This provides a convenient procedure to
implement our tests, because one can use a suboptimal but computationally simple
estimation method. Assumption A.6 is a standard regularity condition on kernel
function kð�Þ. Assumption A.7 provides conditions on the bandwidth h and the
relative speed between R and n, the sizes of the estimation sample and the prediction
sample. We allow the optimal bandwidth rate (e.g., h / n�1=6Þ for bivariate kernel
estimation. Moreover, we allow the size of the prediction sample, n; to be larger than,
or smaller than, or the same as the size of the estimation sample, R: This offers a
wide scope of applicability of our procedure, particularly when the whole sample
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fX tDg
L
t¼1 is relatively small. Finally, Assumption A.8 is a regularity condition under

model misspecification.
We now state the asymptotic theory for the Q̂ðjÞ test defined in (4) and the Ŵ ðpÞ

test defined in (6) under the null hypothesis and the alternative hypothesis.

Theorem 1 (Asymptotic distribution of the out-of-sample evaluation statistic at

individual lags). Suppose Assumption A.1–A.7 in Appendix hold, and let R!1;
n!1 as the total sample size L!1. Then for any given lag j40; Q̂ðjÞ!

d
Nð0; 1Þ

when the continuous-time model for Y ðtÞ is correctly specified.

Theorem 2 (Asymptotic distribution of the out-of-sample portmanteau evaluation

statistic). Suppose the conditions of Theorem 1 hold. Then for any given lag truncation

order p, Ŵ ðpÞ ! Nð0; 1Þ in distribution as n!1 when the continuous-time model for

Y ðtÞ is correctly specified.

Theorem 3 (Asymptotic power of the out-of-sample evaluation statistics). Suppose

Assumptions A.1–A.8 in Appendix hold. Then (i) ðnhÞ�1Q̂ðjÞ!pV
�1=2
0

R 1
0

R 1
0 ½gjðz1; z2Þ �

1�2 dz1 dz2 for any fixed integer j40; (ii) for any sequence of constants fCn ¼ oðnhÞg,
we have P½Ŵ ðpÞ4Cn� ! 1, whenever Zt and Zt�j are not independent or U½0; 1� at

some lag j 2 f1; 2; . . . ; pg.

Theorems 1 and 2 imply that both Q̂ðjÞ and Ŵ ðpÞ are asymptotically N(0,1) under
correct specification of the continuous-time model for Y ðtÞ: Theorem 3 characterizes
the asymptotic power properties of Q̂ðjÞ and Ŵ ðpÞ: These tests have asymptotic unit
power whenever the generalized residuals Zt and Zt�j are not independent or not
U[0,1] at some lag j: Because Q̂ðjÞ and Ŵ ðjÞ diverge to positive infinity as n!1

under model misspecification, one should use upper-tailed N(0,1) critical values (e.g.,
1.65 at the 5% level). Due to space constraint, we omit the details of the proofs for
these theorems here. We refer interested readers to Hong and Li (2005) and Hong
et al. (2005). The latter consider density forecast evaluations for a univariate time
series conditional density model in a discrete-time setting. Although our current
multivariate continuous-time framework is more complicated, the proof strategies
are similar.22
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